Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces.
نویسندگان
چکیده
Hydrophobins are small fungal proteins that self-assemble at hydrophilic/hydrophobic interfaces into amphipathic membranes that, in the case of Class I hydrophobins, can be disassembled only by treatment with agents like pure trifluoroacetic acid. Here we characterize, by spectroscopic techniques, the structural changes that occur upon assembly at an air/water interface and upon assembly on a hydrophobic solid surface, and the influence of deglycosylation on these events. We determined that the hydrophobin SC3 from Schizophyllum commune contains 16-22 O-linked mannose residues, probably attached to the N-terminal part of the peptide chain. Scanning force microscopy revealed that SC3 adsorbs specifically to a hydrophobic surface and cannot be removed by heating at 100 degrees C in 2% sodium dodecyl sulfate. Attenuated total reflection Fourier transform infrared spectroscopy and circular dichroism spectroscopy revealed that the monomeric, water-soluble form of the protein is rich in beta-sheet structure and that the amount of beta-sheet is increased after self-assembly on a water-air interface. Alpha-helix is induced specifically upon assembly of the protein on a hydrophobic solid. We propose a model for the formation of rodlets, which may be induced by dehydration and a conformational change of the glycosylated part of the protein, resulting in the formation of an amphipathic alpha-helix that forms an anchor for binding to a substrate. The assembly in the beta-sheet form seems to be involved in lowering of the surface tension, a potential function of hydrophobins.
منابع مشابه
Structural and functional role of the disulfide bridges in the hydrophobin SC3.
Hydrophobins function in fungal development by self-assembly at hydrophobic-hydrophilic interfaces such as the interface between the fungal cell wall and the air or a hydrophobic solid. These proteins contain eight conserved cysteine residues that form four disulfide bonds. To study the effect of the disulfide bridges on the self-assembly, the disulfides of the SC3 hydrophobin were reduced with...
متن کاملProbing the self-assembly and the accompanying structural changes of hydrophobin SC3 on a hydrophobic surface by mass spectrometry.
The fungal class I hydrophobin SC3 self-assembles into an amphipathic membrane at hydrophilic-hydrophobic interfaces such as the water-air and water-Teflon interface. During self-assembly, the water-soluble state of SC3 proceeds via the intermediate alpha-helical state to the stable end form called the beta-sheet state. Self-assembly of the hydrophobin at the Teflon surface is arrested in the a...
متن کاملMolecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface.
Hydrophobins are small ( approximately 100 aa) proteins that have an important role in the growth and development of mycelial fungi. They are surface active and, after secretion by the fungi, self-assemble into amphipathic membranes at hydrophobic/hydrophilic interfaces, reversing the hydrophobicity of the surface. In this study, molecular dynamics simulation techniques have been used to model ...
متن کاملOligomerization of hydrophobin SC3 in solution: from soluble state to self-assembly.
Hydrophobin SC3 is a protein with special self-association properties that differ depending on whether it is in solution, on an air/water interface or on a solid surface. Its self-association on an air/water interface and solid surface have been extensively characterized. The current study focuses on its self-association in water because this is the starting point for the other two association ...
متن کاملSelf-assembly of the hydrophobin SC3 proceeds via two structural intermediates.
Hydrophobins self assemble into amphipathic films at hydrophobic-hydrophilic interfaces. These proteins are involved in a broad range of processes in fungal development. We have studied the conformational changes that accompany the self-assembly of the hydrophobin SC3 with polarization-modulation infrared reflection absorption spectroscopy, attenuated total reflection Fourier transform infrared...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 74 4 شماره
صفحات -
تاریخ انتشار 1998